A Series of Graphs With Exponentially Growing Reconfigurations Sequences of Independent Sets

Volker Turau and Christoph Weyer
Institute of Telematics, Hamburg University of Technology
Hamburg, Germany
turau@tuhh.de

1 Introduction

In this note we construct a sequence of graphs G_{c} with $(c \in \mathbb{N})$ together with two independent sets S_{c} and T_{c} such that the shortest reconfiguration sequence between S_{c} and T_{c} grows exponentially with respect to the size of the graphs. Reconfiguration of independent sets is with respect to the token jumping rule, i.e., a token can $j u m p$ from one node to any other node as long as the independent set property is retained. In particular the graph G_{c} has size $10 c$, the independent sets have size $4 c$, and the shortest reconfiguration sequence for G_{c} has length $5\left(3^{c}-1\right)$. Table 1 shows the length of the sequences for $c=1,5,10$.

Size of graph	Length of reconfiguration sequence
10	10
50	1210
100	295240

Table 1: Length of reconfiguration sequences for the graphs G_{c}.

2 The Graph Series G_{c}

The graphs of the sequence we construct are called G_{c} with $c \in \mathbb{N}$. The basis is the graph G_{1}, i.e., $c=1$. This graph is shown in Fig. 1. The independent set consists of four nodes depicted in blue, $S_{c}=\{2,4,7,9\}$ (resp. $T_{c}=\{2,5,7,10\}$) is on the left (resp. right). Note that these are maximum independent sets of G_{1}.

Table 2 shows the moves of the shortest reconfiguration sequence from S_{1} to T_{1} in G_{1}, is has length 10 . Note that $S_{1} \cap T_{1}=\{2,7\}$, i.e., only the tokens of

Figure 1: The base graph G_{1} with 10 nodes. The blue nodes depict the start resp. the target independent set.
nodes 4 and 9 have to be move to 5 and 10 . None of these moves can be done in the initial configuration. The first two moves make moving the token from 4 to 10 possible. These moves are rolled back in moves 6 and 7 . Moves 4 and 5 paved the way to move the token from 9 to 5 . These movements are undone in the last two moves. Note that the four chords block shorter reconfiguration sequences. Removing either chord $(4,1)$ or $(5,8)$ would allow a reconfiguration sequence of length 5 and removing any of the other two reconfiguration chords would even allow a length 2 sequence. Thus, the chords stretch the shortest reconfiguration sequences. Adding a fifth chord makes a reconfiguration impossible. The outstanding property of G_{1} with respect to S_{1} is that there is always only one possibility for a jump, i.e., the corresponding reconfiguration graph is a path.

These observations are the underlying idea of constructing the sequences of graphs G_{c}. The constructing process consists of two steps we called duplication and repetition process.

3 The Duplication Process

The duplication process starts by taking two copies of G_{1}. Let $\hat{G}_{1}=G_{1} \cup \overline{G_{1}}$, where $\overline{G_{1}}$ is isomorphic to G_{1}. The overline operator means that the labels of the nodes are incremented by 10, i.e., the nodes of $\overline{G_{1}}$ are labeled $11,12, \ldots 20$. Note that $\hat{G_{1}}$ is not connected. We also construct two independent sets of \hat{G}_{1} : $\hat{S}_{1}=S_{1} \cup \overline{S_{1}}$ and $\hat{T}_{1}=T_{1} \cup \overline{T_{1}}$.

Since S_{1} resp. $\overline{S_{1}}$ are maximum independent sets of G_{1} resp. $\overline{G_{1}}$ it is impossible to move a token from G_{1} to $\overline{G_{1}}$ or vice versa. Obviously the length of the shortest reconfiguration sequence from \hat{S}_{1} to \hat{T}_{1} in \hat{G}_{1} is twice as long as

\#	Independent set	Jump
	2479	
1	2469	$7 \rightarrow 6$
2	2468	$9 \rightarrow 8$
3	26810	$4 \rightarrow 10$
4	36810	$2 \rightarrow 3$
5	1368	$10 \rightarrow 1$
6	1369	$8 \rightarrow 9$
7	1379	$6 \rightarrow 7$
8	1357	$9 \rightarrow 5$
9	35710	$1 \rightarrow 10$
10	25710	$3 \rightarrow 2$

Table 2: A shortest reconfiguration sequence from S_{1} to T_{1} in G_{1} has length 10.
that from S_{1} to T_{1} in G_{1}. We call this reconfiguration sequence the canonical sequence.

In order stretch the reconfiguration sequence from \hat{S}_{1} to \hat{T}_{1} we insert a kind of chords into \hat{G}_{1}, these are edges from a node in G_{1} to a node in $\overline{G_{1}}$. The intention of inserting these chords is to block the moves of the canonical sequence.

As stated above a token from G_{1} (resp. $\overline{G_{1}}$) can only jump to a node in G_{1} (resp. $\overline{G_{1}}$). Hence, a reconfiguration sequence of \hat{G}_{1} restricted to the nodes of $G_{1}\left(\right.$ resp. $\left.\overline{G_{1}}\right)$ yields a valid reconfiguration sequence of $G_{1}\left(\right.$ resp. $\left.\overline{G_{1}}\right)$. This property remains true even if we insert chords into \hat{G}_{1}.

The chords are inserted in such a way such that the shortest reconfiguration sequence \mathcal{S} of the resulting graph when restricted to G_{1} is equal to original shortest reconfiguration sequence of the original graph G_{1}, i.e., $\left.\mathcal{S}\right|_{G_{1}}$ is equal to the reconfiguration sequence that is depicted in Table 2. There are eight chords inserted: $(9,11),(9,13),(9,15),(9,16),(10,11),(10,13),(10,18)$, and $(10,19)$. Denote this set of edges by C. The resulting graph is the graph G_{2}, it consists of 20 nodes and 36 edges (see Fig. 2). The first 26 moves of the reconfiguration sequence from \hat{S}_{1} to \hat{T}_{1} in G_{2} are shown in Tab. 3.

Of course some moves of \mathcal{S} do not change a token of G_{1}. So after removing duplicates $\left.\mathcal{S}\right|_{G_{1}}$ consists of the 10 moves shown in Table 2. On the other hand $\left.\mathcal{S}\right|_{\overline{G_{1}}}$ consists of 30 moves. The first 10 moves also correspond to the moves of Table 2 (these 10 moves are highlighted in Tab. 2). The next 10 moves are also equal to these moves but in inverse order (also highlighted in Tab. 2). Finally, the last 10 moves again correspond to the moves of Table 2. Thus, all together we have 40 moves for G_{2}.

4 The Repetition Process

The graphs G_{c} for $c>2$ are defined inductively. G_{c+1} consists of a copy of G_{c} and a copy of G_{1}. The nodes of the copy of G_{1} are labeled from $10 c+1$ to $10 c+10$.

Figure 2: The graph G_{2} with 20 nodes.

In addition G_{c+1} contains for each edge $(a, b) \in C$ an edge $(a+10(c-1), b+10 c)$. Similarly, we extend the start and target independent set of G_{c} by a transformed copy (i.e., labels incremented by $10 c$) of the nodes of the corresponding sets of G_{1} to independent sets of G_{c+1}.

Let \mathcal{S} be a shortest reconfiguration sequence of G_{c+1}. Then \mathcal{S} restricted to each of the copies of G_{1} in G_{c+1} is a reconfiguration sequence from S_{1} to T_{1}. As shown above, the sequence oscillates between S_{1} and T_{1}. Each simple such sequence in the $i^{t h}$ copy corresponds to three simple sequences in the $(i+1)^{t h}$ copy. Thus, the number of moves of G_{c} is

$$
10 \sum_{i=0}^{c-1} 3^{i}=5\left(3^{c}-1\right)
$$

5 Discussion

The graph G_{1} is constructed from a graph C_{5} which is a cycle with five nodes and a single chord. This graph C_{5} is smallest graph with a non-trivial reconfiguration

\#	Independent set	Jump	\#	Independent set	Jump
	247912141719				
1	246912141719	$7 \rightarrow 6$	14	3681012151720	$2 \rightarrow 3$
2	246812141719	$9 \rightarrow 8$	15	136812151720	$10 \rightarrow 1$
3	246812141619	$17 \rightarrow 16$	16	136813151720	$12 \rightarrow 13$
4	246812141618	$19 \rightarrow 18$	17	136811131517	$20 \rightarrow 11$
5	246812161820	$14 \rightarrow 20$	18	136811131719	$15 \rightarrow 19$
6	246813161820	$12 \rightarrow 13$	19	136811131619	$17 \rightarrow 16$
7	246811131618	$20 \rightarrow 11$	20	136811131618	$19 \rightarrow 18$
8	246811131619	$18 \rightarrow 19$	21	136813161820	$11 \rightarrow 20$
9	246811131719	$16 \rightarrow 17$	22	136812161820	$13 \rightarrow 12$
10	246811131517	$19 \rightarrow 15$	23	136812141618	$20 \rightarrow 14$
11	246813151720	$11 \rightarrow 20$	24	136812141619	$18 \rightarrow 19$
12	246812151720	$13 \rightarrow 12$	25	136812141719	$16 \rightarrow 17$
13	2681012151720	$4 \rightarrow 10$	26	136912141719	$8 \rightarrow 9$

Table 3: A shortest reconfiguration sequence from \hat{S}_{1} to \hat{T}_{1} in G_{2} has length 40.
sequence. The construction is analog to the described duplication process with one exception. In the copy of C_{5} the start and target independent sets are interchanged.

There are a few open questions. Can the described techniques of duplication and repetition used to construct graphs with even longer reconfiguration sequences? For example with reconfiguration sequences of length $d^{O(n)}$ with $d>3$ or even d arbitrarily large? Finally, what are better techniques to construct good graphs?

Figure 3: The graph G_{5} with 50 nodes.

Figure 4: The graph G_{10} with 100 nodes.

