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1 Introduction

In this note we construct a sequence of graphs Gc with (c ∈ N) together with
two independent sets Sc and Tc such that the shortest reconfiguration sequence
between Sc and Tc grows exponentially with respect to the size of the graphs.
Reconfiguration of independent sets is with respect to the token jumping rule,
i.e., a token can jump from one node to any other node as long as the independent
set property is retained. In particular the graph Gc has size 10c, the independent
sets have size 4c, and the shortest reconfiguration sequence for Gc has length
5(3c − 1). Table 1 shows the length of the sequences for c = 1, 5, 10.

Size of graph Length of reconfiguration sequence

10 10
50 1210
100 295240

Table 1: Length of reconfiguration sequences for the graphs Gc.

2 The Graph Series Gc

The graphs of the sequence we construct are called Gc with c ∈ N. The basis is
the graph G1, i.e., c = 1. This graph is shown in Fig. 1. The independent set
consists of four nodes depicted in blue, Sc = {2, 4, 7, 9} (resp. Tc = {2, 5, 7, 10})
is on the left (resp. right). Note that these are maximum independent sets of
G1.

Table 2 shows the moves of the shortest reconfiguration sequence from S1 to
T1 in G1, is has length 10. Note that S1 ∩ T1 = {2, 7}, i.e., only the tokens of
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Figure 1: The base graph G1 with 10 nodes. The blue nodes depict the start
resp. the target independent set.

nodes 4 and 9 have to be move to 5 and 10. None of these moves can be done
in the initial configuration. The first two moves make moving the token from
4 to 10 possible. These moves are rolled back in moves 6 and 7. Moves 4 and
5 paved the way to move the token from 9 to 5. These movements are undone
in the last two moves. Note that the four chords block shorter reconfiguration
sequences. Removing either chord (4, 1) or (5, 8) would allow a reconfiguration
sequence of length 5 and removing any of the other two reconfiguration chords
would even allow a length 2 sequence. Thus, the chords stretch the shortest
reconfiguration sequences. Adding a fifth chord makes a reconfiguration impos-
sible. The outstanding property of G1 with respect to S1 is that there is always
only one possibility for a jump, i.e., the corresponding reconfiguration graph is
a path.

These observations are the underlying idea of constructing the sequences of
graphs Gc. The constructing process consists of two steps we called duplication
and repetition process.

3 The Duplication Process

The duplication process starts by taking two copies of G1. Let Ĝ1 = G1 ∪G1,
where G1 is isomorphic to G1. The overline operator means that the labels of
the nodes are incremented by 10, i.e., the nodes of G1 are labeled 11, 12, . . . 20.
Note that Ĝ1 is not connected. We also construct two independent sets of Ĝ1:
Ŝ1 = S1 ∪ S1 and T̂1 = T1 ∪ T1.

Since S1 resp. S1 are maximum independent sets of G1 resp. G1 it is im-
possible to move a token from G1 to G1 or vice versa. Obviously the length of
the shortest reconfiguration sequence from Ŝ1 to T̂1 in Ĝ1 is twice as long as



# Independent set Jump

2 4 7 9
1 2 4 6 9 7 → 6
2 2 4 6 8 9 → 8
3 2 6 8 10 4 → 10
4 3 6 8 10 2 → 3
5 1 3 6 8 10 → 1
6 1 3 6 9 8 → 9
7 1 3 7 9 6 → 7
8 1 3 5 7 9 → 5
9 3 5 7 10 1 → 10
10 2 5 7 10 3 → 2

Table 2: A shortest reconfiguration sequence from S1 to T1 in G1 has length 10.

that from S1 to T1 in G1. We call this reconfiguration sequence the canonical
sequence.

In order stretch the reconfiguration sequence from Ŝ1 to T̂1 we insert a kind of
chords into Ĝ1, these are edges from a node in G1 to a node in G1. The intention
of inserting these chords is to block the moves of the canonical sequence.

As stated above a token from G1 (resp. G1) can only jump to a node in G1

(resp. G1). Hence, a reconfiguration sequence of Ĝ1 restricted to the nodes of
G1 (resp. G1) yields a valid reconfiguration sequence of G1 (resp. G1). This
property remains true even if we insert chords into Ĝ1.

The chords are inserted in such a way such that the shortest reconfiguration
sequence S of the resulting graph when restricted to G1 is equal to original short-
est reconfiguration sequence of the original graph G1, i.e., S|G1

is equal to the
reconfiguration sequence that is depicted in Table 2. There are eight chords in-
serted: (9, 11), (9, 13), (9, 15), (9, 16), (10, 11), (10, 13), (10, 18), and (10, 19). De-
note this set of edges by C. The resulting graph is the graph G2, it consists of
20 nodes and 36 edges (see Fig. 2). The first 26 moves of the reconfiguration
sequence from Ŝ1 to T̂1 in G2 are shown in Tab. 3.

Of course some moves of S do not change a token of G1. So after removing
duplicates S|G1

consists of the 10 moves shown in Table 2. On the other hand
S|G1

consists of 30 moves. The first 10 moves also correspond to the moves of
Table 2 (these 10 moves are highlighted in Tab. 2). The next 10 moves are also
equal to these moves but in inverse order (also highlighted in Tab. 2). Finally,
the last 10 moves again correspond to the moves of Table 2. Thus, all together
we have 40 moves for G2.

4 The Repetition Process

The graphs Gc for c > 2 are defined inductively. Gc+1 consists of a copy of Gc

and a copy of G1. The nodes of the copy of G1 are labeled from 10c+1 to 10c+10.
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Figure 2: The graph G2 with 20 nodes.

In addition Gc+1 contains for each edge (a, b) ∈ C an edge (a+10(c−1), b+10c).
Similarly, we extend the start and target independent set of Gc by a transformed
copy (i.e., labels incremented by 10c) of the nodes of the corresponding sets of
G1 to independent sets of Gc+1.

Let S be a shortest reconfiguration sequence of Gc+1. Then S restricted to
each of the copies of G1 in Gc+1 is a reconfiguration sequence from S1 to T1.
As shown above, the sequence oscillates between S1 and T1. Each simple such
sequence in the ith copy corresponds to three simple sequences in the (i + 1)th

copy. Thus, the number of moves of Gc is

10

c−1∑
i=0

3i = 5(3c − 1).

5 Discussion

The graph G1 is constructed from a graph C5 which is a cycle with five nodes and
a single chord. This graph C5 is smallest graph with a non-trivial reconfiguration



# Independent set Jump # Independent set Jump

2 4 7 9 12 14 17 19
1 2 4 6 9 12 14 17 19 7→ 6 14 3 6 8 10 12 15 17 20 2 → 3

2 2 4 6 8 12 14 17 19 9 → 8 15 1 3 6 8 12 15 17 20 10 → 1

3 2 4 6 8 12 14 16 19 17 → 16 16 1 3 6 8 13 15 17 20 12 → 13

4 2 4 6 8 12 14 16 18 19 → 18 17 1 3 6 8 11 13 15 17 20 → 11

5 2 4 6 8 12 16 18 20 14 → 20 18 1 3 6 8 11 13 17 19 15→ 19

6 2 4 6 8 13 16 18 20 12 → 13 19 1 3 6 8 11 13 16 19 17 → 16

7 2 4 6 8 11 13 16 18 20 → 11 20 1 3 6 8 11 13 16 18 19 → 18

8 2 4 6 8 11 13 16 19 18 → 19 21 1 3 6 8 13 16 18 20 11 → 20

9 2 4 6 8 11 13 17 19 16 → 17 22 1 3 6 8 12 16 18 20 13 → 12

10 2 4 6 8 11 13 15 17 19 → 15 23 1 3 6 8 12 14 16 18 20 → 14

11 2 4 6 8 13 15 17 20 11 → 20 24 1 3 6 8 12 14 16 19 18 → 19

12 2 4 6 8 12 15 17 20 13 → 12 25 1 3 6 8 12 14 17 19 16 → 17
13 2 6 8 10 12 15 17 20 4 → 10 26 1 3 6 9 12 14 17 19 8 → 9

Table 3: A shortest reconfiguration sequence from Ŝ1 to T̂1 in G2 has length 40.

sequence. The construction is analog to the described duplication process with
one exception. In the copy of C5 the start and target independent sets are
interchanged.

There are a few open questions. Can the described techniques of duplica-
tion and repetition used to construct graphs with even longer reconfiguration
sequences? For example with reconfiguration sequences of length dO(n) with
d > 3 or even d arbitrarily large? Finally, what are better techniques to con-
struct good graphs?
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Figure 3: The graph G5 with 50 nodes.
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Figure 4: The graph G10 with 100 nodes.


