The Documentation of Graph Track in Core Challenge

Takashima Yuya ${ }^{1}$ and Yamaoka Chuta ${ }^{1}$
${ }^{1}$ Minato laboratory of Kyoto University

31 March 2022

1 Graph Structure

Consider a piece consisting of 5 vertices and 2 tokens (Fig. 1). This piece can switch between 0 -state and 1-state via transition-state as shown in Figure 2.
Here, if vertex 1 is blocked by an external token in the 0 -state or 1 -state state, this piece will not be able to switch states (Fig. 3). By preparing piece-1 and piece-2 and connecting them with edges as shown in Figure 4, it is possible to make the possibility of transition of piece-2 depend on piece-1.
Prepare n pieces piece-1, piece-2 \ldots piece- n. For $i(2 \leq i \leq n)$, stretch the edges so that piece- i is transitive only when piece- $i-1$ is 1 -state and piece- $j(1 \leq j \leq i-2)$ is 0 -state. The initial token placement state is such that each piece is 0-state. The target token placement state is set so that only piece- n is 1 -state and all other pieces are 0 -state.
Suppose there are m pieces, and the state of each piece is represented by an 01 -string of length m. In the transition from the initial state to the target state, this 01-string changes by one character, and all 2^{m} possible 01-strings are transitioned as in the Gray code.

2 Reconfiguration Sequence Length

Each piece requires 3 transitions to change its state. There are $|V| / 5$ pieces in the graph, therefore the reconfiguration sequence length is $3 \times\left(2^{|V| / 5}-1\right)$.

10 vertices: 2 pieces, so the length is $3 \times\left(2^{2}-1\right)=9$.
50 vertices: 10 pieces, so the length is $3 \times\left(2^{10}-1\right)=3069$.
100 vertices: 20 pieces, so the length is $3 \times\left(2^{20}-1\right)=3145725$.

Fig. 1 A piece consisting of 5 vertices and 2 tokens

Fig. 2 Transition of a piece

Fig. 3 Blocking transitions by external tokens

Fig. 4 Blocking transitions depending on the state of the external piece
only if piece-1 is 0-state, piece-2 can change its state

only if piece-1 is 1 -state, piece-2 can change its state

Fig. 5 Connection of each piece

