
Every House on the Block: A generalized solution

to creating ISR instances of large plan length

Remo Christen1, Salomé Eriksson1, Michael Katz2, Emil Keyder3,
Christian Muise4, Alice Petrov4, Florian Pommerening1,

Jendrik Seipp5, Silvan Sievers1, and David Speck6

1University of Basel
2IBM T.J. Watson Research Center

3Invitae
4Queen’s University

5Linköping University
6University of Freiburg

1 Introduction

Several strategies were tried throughout the course of the contest. From hand-
crafted examples to exhaustive enumeration of smaller graphs with the aid of
SAT solvers and knowledge compilers. Ultimately, a useful pattern for repeated
movements was discovered. Since it is readily scalable, this is what is used for
the submission. Throughout the remainder of the document, we describe the
core concepts that make up the graph.

2 The “House” Widget

In order to encode bit flips in a graph, we leverage a five node subgraph we
call the “house widget”: a 4-cycle with two adjacent nodes leading to a 5th
(essentially, a triangle sitting on top of a square). The house widget has a
number of properties that make it ideal to use as a building block in creating
exponential sequences.

1. The graph has an optimal “long” shortest reconfiguration sequence for
ISR instances of order 5.

2. You can only place two tokens on this widget, meaning each step of the
reconfiguration sequence consists of a maximum independent set. In other
words, the sequence is “tight” and no additional nodes can be added to
the independent set at any point.



Figure 1: Reconfiguration sequence from “off” to “on”

3. The topmost node, which we call the “anchor”, is occupied throughout
the entire sequence with the exception of the starting state and ending
state, and is required to switch the corners that the two tokens are on.

4. The sequence is unique. Thus, the solution space is a path and the be-
haviour of the widget is predictable.

In summary, we have a widget that remembers its setting, takes five nodes
to do so, and three moves to make it happen. We call one setting “on” and the
other setting “off” (they’re symmetric).

3 Connecting Anchors

Figure 2: Four connected anchors; clearly, only one house can “flip” at a time

Since we treat our house widgets as bit flips, the first step in establishing an
optimally long sequence is ensuring at most one house can be switching states
at any given time. This is done by fully connecting the anchors of all houses in
our graph. Recall that the anchor is both required to switch a house from “on”



to “off” and is occupied throughout the sequence. By making the anchors a
fully connected subgraph, we guarantee no houses switch states simultaneously.

4 Flipping Bits

Figure 3: Edges for a single house. Blue and green edges correspond to Rules 1
and 2 respectively. Grey edges correspond to connections with other anchors.

Figure 4: Four connected houses. Blue and green edges correspond to Rules 1
and 2 respectively. Assume all anchors are fully connected.

Now that we have a rigid set of widgets (referred to henceforth as bits) which
we can turn “on” and “off”, we must connect them in a manner that results
in exponential growth. Assume bits are ordered (so there is a 1st bit, 2nd bit,



etc..). The key challenge is that any edge between house bases will permanently
rule out a pair of bit configurations, thus all additional inter-house edges are
between an anchor and bit values of another house. The order of bit flips is
then enforced by the following relations in order to flip bit k.

Rule 1: Bit k + 1 must be “on”.

Rule 2: Bits k + 2 · · ·n must all be “off”.

This sequence results in an exponential cost flipping things back and forth
in order to get a low bit flipped.

5 Generating Graphs

Figure 5: A series of bit flips for a graph of order 10. Note that each bit flip
takes 3 moves, so the entire sequence is of length 9.

Putting everything together, graphs are generated as follows:

1. Create k “houses”

2. Make the anchors of each house a fully connected subgraph of order k

3. Add edges corresponding to the three bit flipping rules listed in Section
4, Flipping Bits

6 Adding Widgets

The final step is the strategy for adding an extra house. Suppose we have a
sequence of k houses generated via the strategy above. We add house k+1
according to the following:

1. We can only flip house k+1 when the goal of house k is satisfied.

2. The new goal is the initial state of the k house sequence, combined with
the flip of house k+1

This forces the plan length to double with each new house: achieve the old
goal of the k house sequence, flip house k+1, go back to the initial state of the
k house sequence.



7 Contest Instances

Since each size was a multiple of 5, the submissions for the graph track take 2,
10, and 20 houses respectively for graphs of order n=10, 50, and 100.

The lengths of the optimal plans found are as follows:

n Length

10 9

50 3,069

100 3,145,725


