
ReconfAIGERation entering Core Challenge 2022

Nils Froleyks1, Emily Yu1, and Armin Biere2

1Johannes Kepler University, Linz, Austria
2Albert Ludwig University, Freiburg, Germany

March 31, 2022

Abstract

ReconfAIGERation encodes the Independent Set Reconfiguration
problem into a circuit in AIGER format. The bad state property
encodes that the target independent set is reached, without violating
the token jump rule. A witness for the model checking problem is
decoded into a reconfiguration sequence.

Encoding and Solving

To encode the ISR problem into AIGER (version 1.9 [1]) we define a circuit
with one latch and two inputs per node. The latches encode if the node
is in the current independent set. The inputs are divided into two groups:
freed and marked. At each step, exactly one1 node in the current IS is freed
and one not in the current IS marked, thus enforcing the token jump rule.
The independent set constraint is easily encoded by combining gates for each
edge in the graph.

The tool aigtoaig is used to translate the human readable output from
the previous step (.aag) into a binary encoded format (.aig).

For the existent-track the Aiger enconding is solved by the model checker
ABC [4]. ABC runs multiple model checking algorithms in parallel. Among
them is an implementation of IC3/PDR [3]. It can therefore prove the un-
solvability of a problem.

For the shortest-track the model checking problem is solved with the
Bounded Model Checker CaMiCaL [6]. In Bounded Model Checking (BMC)

1To encode the at-most-one part we used the product encoding [5] since a naive square
encoding runs out of memory before the encoding is completed on some of the instances.

1

https://core-challenge.github.io/2022/#the-independent-set-reconfiguration-isr-problem
https://core-challenge.github.io/2022/#the-independent-set-reconfiguration-isr-problem
https://github.com/arminbiere/aiger


the transition function of a circuit is encoded into a SAT formula and copied
a number of times (called makespan). The formula is satisfiable exactly if the
target IS is reachable in at most makespan-many steps. Since the makespan
is incremented step-wise, the first solution found is guaranteed to be the
shortest. CaMiCaL is highly integrated with the incremental SAT solver
CaDiCaL [2] to optimize the effectiveness of incremental inprocessing [6].

For the longest-track we skip the encoding to Aiger and use CaDiCaL
directly. In addition to the usual BMC encoding we add a uniqueness con-
straint to the steps of the solution to disallow loops in the reconfiguration
sequence. In theory the makespan is increased until it reaches the maxi-
mum possible unique solution length: N =

(number of nodes
size IS

)
. The last found

solution is then guaranteed to be the longest. In practice N exceeds the max-
imum integer value in most cases and the computation will not terminate in
reasonable time or memory.

Implementation

Our solver is written in Nim and can be compiled with:

nim cpp -d:release --passL:cadical/build/libcadical.a reconfaigeration

It depends on other executables in the same directory. We cannot provide
the source code for all of them.

We generated the log files in parallel on 32 nodes of our cluster. Each
node has access to two 8-core Intel Xeon E5-2620 v4 CPUs running at 2.10
GHz (turbo-mode disabled) and 128 GB main memory.

Since ABC spawns multiple processes we only allocated one instance
per node. For CaMiCaL we ran 4 instances in parallel on each node. The
memory was limited to 32 GB for each of the instances. The timeout was set
to 10000 seconds for both. For the longest-track we used the same number
of instances and memory limit and a timeout of 5000 seconds.

References

[1] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9 and Be-
yond. 11/2. Altenbergerstr. 69, 4040 Linz, Austria: Institute for Formal
Models and Verification, Johannes Kepler University, July 2011, 2011.

[2] Armin Biere et al. “Entering the SAT Competition 2020”. In: (2020),
p. 4.

2



[3] Aaron R. Bradley. “SAT-Based Model Checking without Unrolling”. In:
Verification, Model Checking, and Abstract Interpretation. Ed. by Ranjit
Jhala and David Schmidt. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2011, pp. 70–87. isbn: 978-3-642-18275-4. doi:
10.1007/978-3-642-18275-4_7.

[4] Robert Brayton and Alan Mishchenko. “ABC: An Academic Industrial-
Strength Verification Tool”. In: Computer Aided Verification. Ed. by
Tayssir Touili, Byron Cook, and Paul Jackson. Lecture Notes in Com-
puter Science. Berlin, Heidelberg: Springer, 2010, pp. 24–40. isbn: 978-
3-642-14295-6. doi: 10.1007/978-3-642-14295-6_5.

[5] Jingchao Chen. “A New SAT Encoding of the At-Most-One Constraint”.
In: Proc. Constraint Modelling and Reformulation (2010), p. 8.

[6] Katalin Fazekas, Armin Biere, and Christoph Scholl. “Incremental In-
processing in SAT Solving”. In: Theory and Applications of Satisfiability
Testing – SAT 2019. Ed. by Mikoláš Janota and Inês Lynce. Lecture
Notes in Computer Science. Cham: Springer International Publishing,
2019, pp. 136–154. isbn: 978-3-030-24258-9. doi: 10.1007/978-3-030-
24258-9_9.

3

https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-030-24258-9_9
https://doi.org/10.1007/978-3-030-24258-9_9

